Compute evapotranspirations indicators from grouped data
Source:R/summarise_evapotranspiration.R
summarise_evapotrapiration.RdThe function computes evapotranspirations (ETo) indicators from grouped data. Expects evapotranspiration in millimeters (mm).
Arguments
- .x
grouped data, created with
dplyr::group_by()- value_var
name of the variable with temperature values.
- normals_df
normals data, created with
summarise_normal()
Details
The high and low ETo indicators are computed based on climatological normals, created with the summarise_normal() function and passed with the normals_df argument. Keys to join the normals data must be present (like id, year, and month) and use the same names.
The following indicators are computed for each group.
countCount of data pointsnormal_meanClimatological normal mean, fromnormals_dfargumentnormal_p10Climatological 10th percentile, fromnormals_dfargumentnormal_p90Climatological 90th percentile, fromnormals_dfargumentmeanAveragemedianMediansdStandard deviationseStandard errormaxMaximum valueminMinimum valuep1010th percentilep2525th percentilep7575th percentilep9090th percentilel_eto_3Count of sequences of 3 days or more with evapotranspirations bellow the climatological average normall_eto_5Count of sequences of 5 days or more with evapotranspirations bellow the climatological average normalh_eto_3Count of sequences of 3 days or more with evapotranspirations above the climatological average normalh_eto_5Count of sequences of 5 days or more with evapotranspirations above the climatological average normal
Examples
# Compute monthly normals
normals <- evapotranspiration_data |>
# Identify month
dplyr::mutate(month = lubridate::month(date)) |>
# Group by id variable and month
dplyr::group_by(code_muni, month) |>
summarise_normal(date_var = date, value_var = value, year_start = 1961, year_end = 1990) |>
dplyr::ungroup()
# Compute indicators
evapotranspiration_data |>
# Identify year
dplyr::mutate(year = lubridate::year(date)) |>
# Identify month
dplyr::mutate(month = lubridate::month(date)) |>
# Group by id variable, year and month
dplyr::group_by(code_muni, year, month) |>
# Compute evapotranspiration indicators
summarise_evapotrapiration(value_var = value, normals_df = normals) |>
# Ungroup
dplyr::ungroup()
#> # A tibble: 3,024 × 21
#> code_muni year month count normal_mean normal_p10 normal_p90 mean median
#> <int> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 3106200 1961 1 31 4.04 2.38 5.59 3.11 3.01
#> 2 3106200 1961 2 28 4.15 2.56 5.31 3.92 3.93
#> 3 3106200 1961 3 31 3.75 2.38 4.73 3.93 4.13
#> 4 3106200 1961 4 30 3.24 2.34 3.91 3.56 3.63
#> 5 3106200 1961 5 31 2.63 1.99 3.12 2.63 2.73
#> 6 3106200 1961 6 30 2.35 1.97 2.67 2.50 2.54
#> 7 3106200 1961 7 31 2.51 2.07 2.93 2.75 2.81
#> 8 3106200 1961 8 31 3.18 2.47 3.83 3.70 3.64
#> 9 3106200 1961 9 30 3.68 2.38 4.60 4.46 4.59
#> 10 3106200 1961 10 31 3.87 2.32 5.16 4.53 4.90
#> # ℹ 3,014 more rows
#> # ℹ 12 more variables: sd <dbl>, se <dbl>, max <dbl>, min <dbl>, p10 <dbl>,
#> # p25 <dbl>, p75 <dbl>, p90 <dbl>, l_eto_3 <int>, l_eto_5 <int>,
#> # h_eto_3 <int>, h_eto_5 <int>