Compute minimum temperature indicators from grouped data
Source:R/summarise_temp_min.R
summarise_temp_min.Rd
The function computes minimum temperature indicators from grouped data. Expects temperature in celsius degrees.
Arguments
- .x
grouped data, created with
dplyr::group_by()
- value_var
name of the variable with temperature values.
- normals_df
normals data, created with
summarise_normal()
Details
The cold spells indicators are computed based on climatological normals, created with the summarise_normal()
function and passed with the normals_df
argument. Keys to join the normals data must be present (like id, year, and month) and use the same names.
The following indicators are computed for each group.
count
Count of data pointsnormal_mean
Climatological normal mean, fromnormals_df
argumentnormal_p10
Climatological 10th percentile, fromnormals_df
argumentnormal_p90
Climatological 90th percentile, fromnormals_df
argumentmean
Averagemedian
Mediansd
Standard deviationse
Standard errormax
Maximum valuemin
Minimum valuep10
10th percentilep25
25th percentilep75
75th percentilep90
90th percentilecold_spells_3d
Count of cold spells occurences, with 3 or more consecutive days with minimum temperature bellow the climatological normal value minus 5 celsius degreescold_spells_5d
Count of cold spells occurences, with 5 or more consecutive days with minimum temperature bellow the climatological normal value minus 5 celsius degreescold_days
Count of cold days, when the minimum temperature is bellow the normal 10th percentilet_0
Count of days with temperatures bellow or equal to 0 celsius degreest_5
Count of days with temperatures bellow or equal to 5 celsius degreest_10
Count of days with temperatures bellow or equal to 10 celsius degreest_15
Count of days with temperatures bellow or equal to 15 celsius degreest_20
Count of days with temperatures bellow or equal to 20 celsius degrees
Examples
# Compute monthly normals
normals <- temp_min_data |>
# Identify month
dplyr::mutate(month = lubridate::month(date)) |>
# Group by id variable and month
dplyr::group_by(code_muni, month) |>
summarise_normal(date_var = date, value_var = value, year_start = 1961, year_end = 1990) |>
dplyr::ungroup()
# Compute indicators
temp_min_data |>
# Identify year
dplyr::mutate(year = lubridate::year(date)) |>
# Identify month
dplyr::mutate(month = lubridate::month(date)) |>
# Group by id variable, year and month
dplyr::group_by(code_muni, year, month) |>
# Compute minimum temperature indicators
summarise_temp_min(value_var = value, normals_df = normals) |>
# Ungroup
dplyr::ungroup()
#> # A tibble: 3,024 × 25
#> code_muni year month count normal_mean normal_p10 normal_p90 mean median
#> <int> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 3106200 1961 1 31 18.1 16.5 19.6 18.1 18.4
#> 2 3106200 1961 2 28 18.4 17.1 19.8 18.5 18.6
#> 3 3106200 1961 3 31 18.0 16.3 19.5 17.9 18.4
#> 4 3106200 1961 4 30 16.3 13.6 18.6 16.6 16.8
#> 5 3106200 1961 5 31 14.0 10.8 16.7 14.2 14.2
#> 6 3106200 1961 6 30 12.3 9.18 15.0 12.9 13.1
#> 7 3106200 1961 7 31 11.9 8.95 14.4 12.0 12.2
#> 8 3106200 1961 8 31 13.2 10.8 15.8 13.0 12.5
#> 9 3106200 1961 9 30 15.3 12.7 17.6 16.5 16.4
#> 10 3106200 1961 10 31 16.9 14.5 18.9 17.2 17.1
#> # ℹ 3,014 more rows
#> # ℹ 16 more variables: sd <dbl>, se <dbl>, max <dbl>, min <dbl>, p10 <dbl>,
#> # p25 <dbl>, p75 <dbl>, p90 <dbl>, cold_spells_3d <int>,
#> # cold_spells_5d <int>, cold_days <int>, t_0 <int>, t_5 <int>, t_10 <int>,
#> # t_15 <int>, t_20 <int>