Compute windspeed indicators from grouped data
Source:R/summarise_windspeed.R
summarise_windspeed.Rd
The function computes windspeed (u2) indicators from grouped data. Expects windspeed in meters per second (m/s).
Arguments
- .x
grouped data, created with
dplyr::group_by()
- value_var
name of the variable with temperature values.
- normals_df
normals data, created with
summarise_normal()
Details
The high and low u2 indicators are computed based on climatological normals, created with the summarise_normal()
function and passed with the normals_df
argument. Keys to join the normals data must be present (like id, year, and month) and use the same names.
The following indicators are computed for each group.
count
Count of data pointsnormal_mean
Climatological normal mean, fromnormals_df
argumentnormal_p10
Climatological 10th percentile, fromnormals_df
argumentnormal_p90
Climatological 90th percentile, fromnormals_df
argumentmean
Averagemedian
Mediansd
Standard deviationse
Standard errormax
Maximum valuemin
Minimum valuep10
10th percentilep25
25th percentilep75
75th percentilep90
90th percentilel_eto_3
Count of sequences of 3 days or more with windspeed bellow the climatological normall_eto_5
Count of sequences of 5 days or more with windspeed bellow the climatological normalh_eto_3
Count of sequences of 3 days or more with windspeed above the climatological normalh_eto_5
Count of sequences of 5 days or more with windspeed above the climatological normal
Examples
# Compute monthly normals
normals <- windspeed_data |>
# Identify year
dplyr::mutate(year = lubridate::year(date)) |>
# Identify month
dplyr::mutate(month = lubridate::month(date)) |>
# Group by id variable, year and month
dplyr::group_by(code_muni, year, month) |>
summarise_normal(date_var = date, value_var = value, year_start = 1961, year_end = 1990) |>
dplyr::ungroup()
# Compute indicators
windspeed_data |>
# Identify month
dplyr::mutate(month = lubridate::month(date)) |>
# Group by id variable and month
dplyr::group_by(code_muni, month) |>
# Compute windspeed indicators
summarise_windspeed(value_var = value, normals_df = normals) |>
# Ungroup
dplyr::ungroup()
#> # A tibble: 48 × 20
#> code_muni month count normal_mean normal_p10 normal_p90 mean median sd
#> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 3106200 1 58590 1.14 0.645 1.57 1.20 1.11 0.465
#> 2 3106200 2 53370 0.934 0.531 1.35 1.20 1.12 0.455
#> 3 3106200 3 58590 1.33 0.727 2.15 1.14 1.03 0.475
#> 4 3106200 4 56700 1.17 0.811 1.52 1.15 1.04 0.486
#> 5 3106200 5 58590 1.01 0.530 1.35 1.11 0.997 0.483
#> 6 3106200 6 56700 1.37 0.587 2.02 1.13 1.02 0.498
#> 7 3106200 7 58590 1.27 0.792 1.66 1.22 1.12 0.530
#> 8 3106200 8 58590 1.41 0.796 1.94 1.41 1.31 0.586
#> 9 3106200 9 56700 1.35 0.727 2.20 1.54 1.44 0.595
#> 10 3106200 10 58590 1.98 1.26 2.72 1.45 1.33 0.596
#> # ℹ 38 more rows
#> # ℹ 11 more variables: se <dbl>, max <dbl>, min <dbl>, p10 <dbl>, p25 <dbl>,
#> # p75 <dbl>, p90 <dbl>, l_u2_3 <int>, l_u2_5 <int>, h_u2_3 <int>,
#> # h_u2_5 <int>