%%{ init: { 'theme': 'base', 'themeVariables': { 'fontSize': '30px' } } }%% flowchart LR climate(Climate) --> vector(Disease vectors) --> health(Human health) climate --> health climate --> social(Social & economic \n determinants) --> health
An application case for Brazil
Inria
2024-03-21
Direct relationship: floods, droughts, heat waves…
Indirect relationship
%%{ init: { 'theme': 'base', 'themeVariables': { 'fontSize': '30px' } } }%% flowchart LR climate(Climate) --> vector(Disease vectors) --> health(Human health) climate --> health climate --> social(Social & economic \n determinants) --> health
Zonal Statistics of Climate Indicators from ERA5-Land for Brazilian Municipalities
%%{ init: { 'theme': 'base', 'themeVariables': { 'fontSize': '30px' } } }%% flowchart TD era5(ERA5-Land \n indicators) --> hdata(Hourly data) bb(Latin America \n bounding box) --> hdata hdata --> agg(Aggregation to \n daily data) agg --> mun(Municipal boundaries) mun --> zs(Zonal statistics)
https://rfsaldanha.github.io/data-projects/era5land-daily-latin-america.html
6,085,749,761 records
Rio de Janeiro municipalities. January 1, 2010.
\[ {\small \begin{aligned} D_t = \mu + & \theta_1 D_{t-1} + \cdots + \theta_p D_{t-p} + \\ & \lambda_1 C_{t-1} + \cdots + \lambda_p C_{t-p} + \\ & \varepsilon_1 e_{t-1} + \cdots + \varepsilon_p e_{t-p} \end{aligned}} \]
Thanks
ERA5-Land indicators | Daily time-aggregating functions | Spatial zonal statistics |
---|---|---|
Temperature (2m) | mean, max, min | max, min, stdev, count |
Dewpoint temp. (2m) | mean | max, min, stdev, count |
\(u\) component of wind | mean | max, min, stdev, count |
\(v\) component of wind | mean | max, min, stdev, count |
Surface pressure | mean | max, min, stdev, count |
Total precipitation | sum | max, min, stdev, count, sum |