Computes direct adjusted rates and confidence intervals.
Usage
rate_adj_direct(
.data,
.std,
.keys = NULL,
.name_var = "name",
.value_var = "value",
.age_group_var = "age_group",
.age_group_pop_var = "population",
.events_label = "events",
.population_label = "population",
.progress = TRUE
)
Arguments
- .data
A tibble containing events counts and population per groups (e.g. age groups)
- .std
A vector with standard population values for each group
- .keys
Optional. A character vector with grouping variables, like year and region code.
- .name_var
Variable containing variable names. Defaults to
name
.- .value_var
Variable containing values. Defaults to
value
.- .age_group_var
Variable name of age groups. Defaults to
age_group
.- .age_group_pop_var
Variable name of population size on
.std
. Defaults topopulation
.- .events_label
Label used for events at the
name_var
variable. Defaults toevents
.- .population_label
Label used for population at the
name_var
variable. Defautls topopulation
.- .progress
Whether to show a progress bar. Defaults to
TRUE
.
Details
This functions wraps the epitools
ageadjust.direct function to compute direct adjusted rates and "exact" confidence intervals using tibble
objects with multiple grouping keys.
A tibble (.data
) must be informed containing key variables like year and region code, and population and and events count (e.g. cases) per age group. Check the fleiss_data
for an example.
A tibble (.std
) must be also supplied containing the age groups and population size. By default, this tibble has two variables, named age_group
and pop
.
Examples
standard_pop <- tibble::tibble(
age_group = c("Under 20", "20-24", "25-29", "30-34", "35-39", "40 and over"),
population = c(63986.6, 186263.6, 157302.2, 97647.0, 47572.6, 12262.6)
)
rate_adj_direct(fleiss_data, .std = standard_pop)
#> # A tibble: 1 × 4
#> crude.rate adj.rate lci uci
#> <dbl> <dbl> <dbl> <dbl>
#> 1 0.000895 0.00437 0.00414 0.00546