Computes indirect adjusted rates and confidence intervals.
Usage
rate_adj_indirect(
.data,
.std,
.keys = NULL,
.name_var = "name",
.value_var = "value",
.age_group_var = "age_group",
.age_group_pop_var = "population",
.events_label = "events",
.population_label = "population",
.progress = TRUE
)Arguments
- .data
A tibble containing events counts and population per groups (e.g. age groups)
- .std
A vector with standard population values for each group
- .keys
Optional. A character vector with grouping variables, like year and region code.
- .name_var
Variable containing variable names. Defaults to
name.- .value_var
Variable containing values. Defaults to
value.- .age_group_var
Variable name of age groups. Defaults to
age_group.- .age_group_pop_var
Variable name of population size on
.std. Defaults topopulation.- .events_label
Label used for events at the
name_varvariable. Defaults toevents.- .population_label
Label used for population at the
name_varvariable. Defautls topopulation.- .progress
Whether to show a progress bar. Defaults to
TRUE.
Details
This functions wraps the epitools ageadjust.indirect function to compute indirect adjusted rates and "exact" confidence intervals using tibble objects with multiple grouping keys.
A tibble (.data) must be informed containing key variables like year and region code, and population and and events count (e.g. cases) per age group. Check the fleiss_data for an example.
A tibble (.std) must be also supplied containing the age groups, events and population size. By default, this tibble has three variables, named age_group, name and value. Check the selvin_data_1940 for an example.