Skip to contents

Computes indirect adjusted rates and confidence intervals.

Usage

rate_adj_indirect(
  .data,
  .std,
  .keys = NULL,
  .name_var = "name",
  .value_var = "value",
  .age_group_var = "age_group",
  .age_group_pop_var = "population",
  .events_label = "events",
  .population_label = "population",
  .progress = TRUE
)

Arguments

.data

A tibble containing events counts and population per groups (e.g. age groups)

.std

A vector with standard population values for each group

.keys

Optional. A character vector with grouping variables, like year and region code.

.name_var

Variable containing variable names. Defaults to name.

.value_var

Variable containing values. Defaults to value.

.age_group_var

Variable name of age groups. Defaults to age_group.

.age_group_pop_var

Variable name of population size on .std. Defaults to population.

.events_label

Label used for events at the name_var variable. Defaults to events.

.population_label

Label used for population at the name_var variable. Defautls to population.

.progress

Whether to show a progress bar. Defaults to TRUE.

Value

A tibble with crude and adjusted rate, lower and upper confidence intervals.

Details

This functions wraps the epitools ageadjust.indirect function to compute indirect adjusted rates and "exact" confidence intervals using tibble objects with multiple grouping keys.

A tibble (.data) must be informed containing key variables like year and region code, and population and and events count (e.g. cases) per age group. Check the fleiss_data for an example.

A tibble (.std) must be also supplied containing the age groups, events and population size. By default, this tibble has three variables, named age_group, name and value. Check the selvin_data_1940 for an example.

Examples

rate_adj_indirect(.data = selvin_data_1960, .std = selvin_data_1940)
#> # A tibble: 1 × 4
#>   crude.rate adj.rate     lci     uci
#>        <dbl>    <dbl>   <dbl>   <dbl>
#> 1    0.00166  0.00166 0.00165 0.00167