Dengue AI
  • Home
  • Data
  • Cluster analysis
  • Modeling
  • Software
  • Publications
  • Exported data
  • Presentations
  • Summary
  1. Modeling
  2. Dengue time series modelling
  3. Global and subset models workflow
  • Data
    • Dengue data
      • Overview
      • Raw files
      • Case classification analysis
      • Missing data analysis
      • Imputation
      • Export aggregated database
    • Weather data
    • Socio economic data
    • Bundled data
  • Cluster analysis
    • Overview
    • Univariate
      • Long time series
        • Raw cases
        • Raw cases, cumulative
        • Scaled cases
        • Scaled cases, cumulative
        • SDTW, cumulative and scaled long time series
        • Time series features
        • Hierarchical clustering
      • Municipality/year time series
        • Yearly time series
        • Cumulative time series
        • Epi year time series
    • Multivariate
      • Cases and climate variables multivariate clustering
      • Climate variables multivariate clustering
  • Modeling
    • Overview
    • Denque and weather lags
    • Dengue case classification
    • Dengue time series modelling
      • Global and subset models workflow
      • Univariate models
        • SBD clustering
        • Time series features clustering
        • Time series features clustering, with robust sparse k-means
      • Multivariate models
        • Multivariate clustering, all data model
        • Multivariate clustering, climate model
  • Software
  • Publications
  • Exported data
  • Presentations
    • Overview
    • Project presentation
    • Project presentation, short version
    • A trajectory on health data and information
  • Publications

Global and subset models workflow

Author

Raphael Saldanha

Last modification

December 1, 2023 | 09:07:18 +01:00

  flowchart TD
    Y0[Dengue data] --> | Filter municipalities \n with 100k inhab| Y[Subset dengue data]
    X1[Weather data]
    X2[Other covariates]
    X1 --> A[Dataset]
    X2 --> A
    Y --> B[Clustering algorithm \n assign k partitions] 
    B --> |Add cluster ID \n variable| A
    A --> A2[Time lag \n outcome and predictors]
    A2 --> |Drop date variable| D{Split}
    D --> E[Train dataset]
    D --> F[Test dataset]
    E --> G[Global model \n specification]
    G --> |Drop \ncluster ID| H[Tune hyperparameters]
    E --> I[Subsets k  \nmodel specification]
    I --> |k models| H
    H --> J[Predict with \n global model training]
    F --> J
    H --> K[Predict with k \n subsets trainings]
    F --> K
    J --> L[Collect metrics for each municipality \n and compare models performance]
    K --> L
Dengue case classification
SBD clustering
Website made with Quarto, by Raphael Saldanha.
 
Inria | LNCC | PCDaS